[ID:3-6297714] (新课标)人教A版数学选修1-1(课件41+教案+练习)第2章 2.2 2.2.1 双曲 ...
当前位置: 数学/高中数学/人教新课标A版/选修1-1/第二章圆锥曲线与方程/2.2双曲线
资料简介:
==================资料简介======================
第2章 2.2 2.2.1 双曲线及其标准方程:41张PPT
2.2 双曲线
2.2.1 双曲线及其标准方程
学 习 目 标
核 心 素 养

1.理解双曲线的定义、几何图形和标准方程的推导过程.(重点)
2.掌握双曲线的标准方程及其求法.(重点)
3.会利用双曲线的定义和标准方程解决简单的问题.(难点)
1.通过双曲线的学习,培养学生直观想象的素养.
2.借助双曲线标准方程的推导,提升数学运算的素养.



1.双曲线的定义
把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.
思考:(1)双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?
(2)双曲线的定义中,若|MF1|-|MF2|=2a(常数),
且2a<|F1F2|,则点M的轨迹是什么?
[提示] (1)当距离之差的绝对值等于|F1F2|时,动点的轨迹是两条射线,端点分别是F1,F2,当距离之差的绝对值大于|F1F2|时,动点的轨迹不存在.
(2)点M在双曲线的右支上.
2.双曲线的标准方程
焦点在x轴上
焦点在y轴上

标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)

焦点
F1(-c,0),
F2(c,0)
F1(0,-c),
F2(0,c)

a,b,c的关系
c2=a2+b2


1.已知动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是(  )
A.双曲线    B.双曲线的一支
C.两条射线 D.一条射线
D [∵|PM|-|PN|=2=|MN|,
∴点P在线段MN的延长线上,即点P的轨迹是一条射线.]
2.双曲线-=1的焦距为(  )
A.3 B.4  
C.3   D.4
D [c2=10+2=12,所以c=2,从而焦距为4.]
3.已知双曲线的a=5,c=7,则该双曲线的标准方程为(  )
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0
C [b2=c2-a2=72-52=24,故选C.]


对双曲线标准方程的理解

================================================
压缩包内容:
第2章 2.2 2.2.1 双曲线及其标准方程.ppt
第2章 2.2 2.2.1 双曲线及其标准方程.doc
课时分层作业9 双曲线及其标准方程.doc
展开
数学精优课

下载与使用帮助